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Abstract— Many current home health monitoring systems are 

based on wearable sensors, which may compromise patient 
compliance and adherence due to the irritation or inconvenience 
of wearing, maintaining and charging such devices. In addition, 
most existing systems can only acquire limited relevant data and 
thus fall short of clinical value. In an effort to address these 
limitations, this paper reports the initial study of non-contact 
home health monitoring based on custom-designed low-cost 
ultrasensitive accelerometers. These sensors were developed 
based on a unique cascaded asymmetric-gapped cantilever 
structure and achieved a resolution orders of magnitude better 
than the ones used in smart phones and other wearable devices. 
Using these new sensors, we successfully demonstrated non-
contact recording of ballistocardiogram (BCG), caused by the 
momentum of blood flow during cardiac cycle, mainly from beds, 
but also from the floor, chairs and sofas.   Heart rate, respiration, 
and other physiological information can be extracted from the 
BCG data. We also demonstrated 3-dimensional (3-D) BCG 
measurement capability by mounting 3 sensors to the bed in 
orthogonal directions. 3D BCG not only offers richer vital signs 
potentially, but also enables identification of postures and thus 
more accurate tracking of BCG variation.  This research may 
lead to a new home health monitoring system, which is not only 
unobtrusive, attendance-free, low-cost, but also offers rich 
physiological information. 

Keywords—home health monitoring; non-contact monitoring; 
Ballisocardiogram (BCG); accelerometer 

I. INTRODUCTION 
As our society ages, the number of patients with chronic 

cardiovascular diseases is growing, burdening the already over-
stretched healthcare system. Home monitoring systems 
promise to improve the quality of life, provide early prognosis, 
reduce the chance of re-hospitalization, decrease mortality rate, 
and reduce the overall medical cost.  Not surprisingly, this 
exciting field has attracted a lot of attention from both 
academia and commercial sector and many progresses have 
been achieved. However, up to now the potential of home 
health monitoring has not be fully realized. From hardware 

perspective, two major technical reasons for this exist. First, 
many home monitoring systems require attaching or wearing a 
device on the body. The advantage of wearable devices is their 
24-hour continuous monitoring capability. Nevertheless, the 
patient compliance and adherence of wearable device is a 
concern due to the inconvenience, irritation, and the extra 
effort of wearing, maintaining and charging such devices. 
Actually, the poor patient adherence is already a big issue for 
disease management. For example, a study of 202 heart failure 
(HF) patients found out that only 14% of patients weighed 
themselves daily and only 34% taking all medications as 
prescribed [1]. Moreover, some wearable patches may cause 
skin irritation, redness or permanent damage with long–term 
use. Second, most existing home monitoring systems can only 
acquire limited vital sign information and thus fall short of 
clinical value. Heart rate monitors for example give some 
information on heart function but provide limited physiological 
insight for most patients with cardiovascular disease. The lack 
of usable data may also account for the ineffectiveness of home 
monitoring on HF found in a number of large scale randomized 
controlled trials [2, 3]. 

The ideal home monitoring systems should be unobtrusive, 
require minimum attendance, have little or no disruption to an 
individual’s daily routine, affordable, and more importantly, be 
able to provide clinically important information. Toward this 
end, this paper reports a vibration-sensing based home 
monitoring system, which is not only unobtrusive, attendance-
free, low-cost, but also offers a rich reservoir of physiological 
information.   

It is well-known that the human body is a rich source of 
motions and vibrations, due to walking, running, posture 
change during sleep and other physical activities. That’s the 
reason vibration/motion sensors have been integrated into 
smart wristbands or smart watches, e.g., Fitbit, Jawbone, Apple 
Watch, etc., for activity and sleep monitoring. Activity 
monitoring has also been demonstrated using accelerometers in 
smart phones. These devices use MEMS accelerometers, which 
typically have a noise floor in milli-gravity (mg)/√Hz or sub-
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mg/√Hz levels.  For example, a typical MEMS accelerometer, 
VTI technologies CMA 3000-A01, has a resolution of 0.3 
mg/√Hz [4] .  

Our approach is based on the fact that physiological 
activities inside the human body are actually a constant source 
of vibration as well. For example, the blood circulation during 
every cardiovascular cycle (systolic and diastolic) generates a 
recoil vibration of the body, which can be captured and 
graphically represented as a ballistocardiogram (BCG) [5]. As 
explained later, BCG contains a rich reservoir of physiological 
information of cardiovascular and respiratory systems. By 
basic mechanical theory, this recoil vibration will propagate to 
objects, such as beds or chairs, where the subject is in contact. 
In principle, we can unobtrusively detect BCG by attaching 
accelerometers to beds or chairs. However, such BCG 
vibration is very weak and it is challenging to detect BCG from 
furniture using MEMS accelerometers. To measure BCG 
accurately and reliably, we developed a totally different 
category of accelerometers - those that can detect vibrations 
down to ~10s nano-gravity (ng)/√Hz level, 3-4 orders of 
magnitude better than typical MEMS ones used in smart 
phones and wristbands with noise floors in mg/√Hz or sub-
mg/√Hz level. Achieving this would enable detection of very 
small BCG vibrations, and permit unobtrusive physiological 
activity monitoring.  

The rest of the paper is structured as follows: First, the 
clinical value of BCG for home health monitoring is discussed 
briefly. Next, the development of the new ultra-sensitive 
accelerometers, including a short review of existing BCG 
sensors and the operating principle, design and optimization of 
the cascaded asymmetric-gapped cantilever, is presented. 
Subsequently, the BCG measurement results recorded by 
newly developed accelerometers are presented and discussed.  
3-D BCG and posture extraction are then discussed. The next 
section is a discussion of some practical issues of BCG based 
home health monitoring and future developments.  Finally, a 
brief conclusion is presented. 

II. CLINICAL VALUE OF BCG FOR HOME HEALTH MONITORING 
BCG is the body’s reaction force to the ejection of blood 

during cardiac cycle and is affected by the hemodynamics of 
the cardiovascular system.  The basic concept of BCG was 
first reported in 1877 by Gordon [6], and was extensively 
researched more than half century ago [7-14]. The amplitudes, 
time intervals and slopes of the BCG waveforms can be used 
to extract valuable clinical information, such as the left 
ventricle contraction force and the contractility [15]. However, 
BCG was not successfully adopted clinically as a diagnostic 
tool for a couple of reasons. First, the equipment for BCG 
measurement, typically a specially designed swing table, was 
bulky, heavy and expensive (e.g., $25000, 2008 dollars [16]). 
Second, there was significant variation from one subject to 
another, making the inter-subject comparison or interpretation 
difficult [16]. While such a concern is important, for home 
health monitoring, the ability to measure intra-individual 
variability in BCG signals with fidelity is of greater interest.  
Prior research demonstrated that a change in an individual’s 

BCG over time provides clear prognostic information [9, 11, 
14, 17]. For instance, by recoding BCG signals of 100 
recovering myocardial infarction patients over 18 months or 
longer, Mandelbaum et al. concluded that the BCG was a 
valuable prognostic indicator of functional recovery of heart 
[17]. For 65 patients with improved BCG, 55 of them 
recovered well and returned to their normal duties. Of 35 
patients whose BCG remained abnormal, 11 died and 19 were 
cardiac invalid. In another study, Starr et al. tracked BCG of 
211 healthy subjects over 20 years and concluded that 
decreasing BCG amplitude (e.g., I to J amplitude in Fig. 4) is 
closely correlated to degrading cardiac health [18]. In these 
studies, it was found that the BCG can provide prognosis of 
heart disease years earlier than other clinical evidence.  
Recently, Etemadi et al. found that the root-mean-square 
(RMS) power of the BCG is a good reflection of clinical status 
of HF (85 patient days from 10 patients, p<0.01) [19]. 
Consequently, there has been renewed interest in BCG as a 
personal or home monitoring modality [5, 20, 21]. 
 What makes BCG even more attractive is that respiration 
information such as rate and strength can be extracted. 
Therefore, we can unobtrusively detect abnormal respirations 
such as apnea, hypopnea, dyspnea, periodic breathing and 
Cheyne–Stokes respiration, which are common HF symptoms 
and of prognostic value [2, 22-25]. Based on a clinical study of 
62 patients with chronic heart failure (CHF), the number of 
apneas and hypopneas per hour has been found to be a 
powerful independent predictor of poor prognosis [23]. 

III. SENSOR DEVELOPMENT 
Due to the potential of BCG in personal and home health 

monitoring, a variety of new BCG sensors have been 
developed, trying to overcome the cost and size limitations of 
the swing-table equipment. Commercially available weighing 
scales that have been modified to acquire BCG signals have 
been evaluated in several different studies [16, 26-30]. 
Electromechanical films (EMFi) sensors, which are based on 
permanently polarized polypropylene film, have also been 
developed and embedded in chairs or beds to detect BCG 
signals [31-33].  Additional attempts to incorporate BCG 
waveforms capture in everyday life include placement of 
piezoelectric film sensors under bed sheets [34, 35], fiber 
optic force sensors within chairs and beds [36-38], pneumatic 
pressure sensors in air mattresses and cushions [39-41], force 
sensors installed under the bed posts [42-44], and strain 
gauges mounted to the slats of a hospital bed frame [45].   

Despite improvements, these new BCG devices still have a 
number of limitations. Some sensors, especially optical fiber 
force sensors, are expensive. Weighing scales are only used for 
intermittent BCG recording and are susceptible to motion 
artifacts. In addition, most existing sensors still cannot obtain 
high-quality BCG signals reliably. Some pneumatic sensors 
[39] and force sensors [43] are not optimal for capturing the 
details of BCG waveforms. Other sensors (such as EMFi, 
piezoelectric film and optical fiber sensors) are very sensitive 
to positions or postures. The signal can easily degrade or get 
lost when the subject moves away from the optimal contact 
location. 
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 We developed ultra-sensitive accelerometers that 
effectively address limitations of current BCG sensors. The 
ultrahigh sensitivity of new sensors enables robust and accurate 
BCG acquisition from chairs, sofas, beds, and even directly 
from the floor. In addition, these sensors can be fabricated with 
a low cost, making them very affordable.  

The ultra-sensitive accelerometer is based on an 
asymmetric-gapped cantilever structure, as schematically 
shown in Fig. 1 (a). The top beam formed by a piezoelectric 
sensing layer (w2×t2×l) is separated from the bottom 
mechanical beam (w1×t1×l) by a gap. It is worth noting that the 
strain experienced by the sensing layer is proportional to the 
distance between the sensing layer and the neutral plane.  This 
distance for the asymmetric-gapped cantilever is d2=y2–yc, 
whereas for the conventional cantilever shown in Fig.1 (b), it is 
typically only half of the cantilever thickness h/2. Because of 
the gap, d2 is much larger than h/2. Therefore, if the spring 
constants of the two designs are equal, the sensitivity of the 
gapped design will be significantly higher than the 
conventional one. 
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Fig. 1. (a) Cross sectional view of an accelerometer based on an asymmetric-
gapped cantilever; y1, y2, are the positions of middle planes of bottom and top 
beams, respectively; yc is the position of the effective neutral plane.  (b) Cross 
sectional view of an accelerometer based on a conventional cantilever. (c) 
Energy distribution within the asymmetric gapped cantilever. What 
contributes to the output signal is the normal stretching of the top sensing 
beam. 

This idea seems to be very straightforward. Nevertheless, 
the implementation of such an asymmetric gapped cantilever is 
actually very challenging. If not designed properly, the 
sensor’s performance will be degraded instead of being 
improved. A comprehensive analytical model has been 
developed to fully understand and optimize the sensor design 
previously [46, 47]. 

It is worth noting that the deflection of the asymmetric-
gapped cantilever under acceleration can be decomposed into 
rotational and translational/shear bending as shown in Fig. 1 
(c). This is very different from the conventional Euler-
Bernoulli beam theory where the shear bending is neglected.  
The vibration energy is distributed in different parts of the 
asymmetric-gapped cantilever with different forms as shown in 
Fig. 1 (c). What is effective in generating output voltage is only 
the energy stored in the top sensing layer in the form of normal 
strain. For instance, the shear bending leads to opposite stresses 

along the thickness direction of the piezoelectric layer, thus 
cancelling the voltage or charge generated. As explained in[46, 
47], to maximize the energy in the top sensing in the form of 
normal strain, the following equation needs to be satisfied: 
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where E1, w1, t1, y1 and E2, w2, t2, y2 are the Young’s moduli, 
width, thickness, and vertical position of the bottom and top 
beams, respectively.  

To sense low-frequency vibrations, such as BCG, it is 
necessary to reduce the spring constant to achieve an even 
higher sensitivity. For an optimized design, the effective spring 
constant k can be estimated by the following formula: 
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Based on Eq. (2), the reduction of k in theory can be 

accomplished by reducing the cross sectional area of the 
sensing beam A2. Practically, this will make the manufacturing 
or fabrication of the sensor challenging and pose reliability 
issues. Alternatively, we can increase the cantilever length l. 
However, this will make the shear deformation of the 
asymmetric-gapped cantilever dominant and reduce the energy 
efficiency. To address this issue, we invented a simple but 
effective cascaded asymmetric-gapped cantilever to lower the 
spring constant while maintaining the dominance of rotational 
bending. A design based on a three-stage cascaded gapped 
cantilever is schematically illustrated in Fig. 2 (a). The bottom 
mechanical beam has the same width as the proof mass, 
simplifying the machining process and thus reducing the cost. 
The sensor body was machined using cupper. The top sensing 
layer is lead zirconate titanate (PZT). The cross sections of the 
top and bottom beams are selected based on Eq. (1). 

Proof mass 

Sensing beam 

Mechanical beam  
(a) 

 
(b) 

Fig. 2. (a) Schematic of the ultra-sensitive accelerometer based on a three-
stage cascaded asymmetric-gapped cantilever structure.  The red beam 
represents the piezoelectric sensing element (lead zirconate titanate, PZT). (b) 
Picture of an ultrasensitive accelerometer in comparison with an iPhone 4 
smart phone. 
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A sensor prototype packaged with an acrylic case is shown 
in Fig. 2(b), in comparison with an iPhone 4 smart phone. The 
PZT layer is 0.5 mm thick and 2.7 mm wide. A charge 
amplifier is also integrated inside the case. For this sensor, 
more than 80 % of the energy is concentrated on the PZT in the 
form of normal stress. The resulting voltage sensitivity is 12.9 
V/g (before charge amplifier), and resonant frequency is 230 
Hz. As explained in [48], this accelerometer can reach ~10s 
ng/√Hz level, much better than typical MEMS ones used in 
smart phones. More detailed discussion, analysis and 
characterization of accelerometers based on cascaded 
asymmetric-gapped cantilever can be found in [48]. It is worth 
noting that this type of accelerometers can be readily mass-
produced with a low cost, a highly desirable feature for the 
home health monitoring application. 

IV. BCG RECORDING 
The newly developed ultra-sensitive accelerometer has 

been demonstrated for detecting BCG on beds. The sensor was 
conveniently attached to the front frame of a bed using 3M 
damage free strips as shown in Fig. 3 (a). This sensor measures 
BCG in x direction, i.e., the head-to-toe direction. It is worth 
noting that the sensor can also be mounted in the inner surface 
of the frame or other locations. The output of the sensor 
(amplified by a charge amplifier) is recorded by a 16-bit data 
acquisition board (National Instrument, USB 6210) with a 
sampling rate of 120 Hz. Overnight sleep data have been 
successfully acquired from healthy volunteers. Figure 3 (b) 
plots a 2-hour period of representative sleep data. The large 
spikes are caused by body movements such as rolling. The 
detail of the BCG signal is revealed in Fig.3 (c). Figure 3 (d) 
shows the enlarged view of the signal caused by the body 
movement, together with the BCG pulses.  During this 2-hour 
period, there were approximately 20 large-spike scenarios, 
most likely caused by body motions. In the remaining 98% or 
99% of the period, BCG can be reliably recorded. All 
presented data are bandpass filtered from 0.2 Hz to 20 Hz. 
Note that both BCG signals and body movements are useful 
information in evaluating the sleep quality.  

The basic information that can be easily extracted from 
BCG is the heart rate. Compared with other methods, such as 
photoplethysmography (PPG) and electrocardiography (ECG), 
the most significant advantage of BCG approach is that the 
heart rate is measured in a non-contact way. Namely, no 
devices or sensors need to be attached to the human body. 
Therefore, it is hassle free and will not cause any irritation.   

It can also be observed from Fig. 3 (c) and (d) that the 
amplitude of BCG pulses is not constant. This is mainly 
because of the modulation of respiration. A more obvious 
result is presented in Fig. 4. The heart rate is 60 beats/min and 
the respiration rate is 7 breaths/min. The respiration 
information such as rate and magnitude can be derived from 
the envelope of BCG waveforms. Obviously, a promising 
application will be sleep quality monitoring. The 
cardiovascular and respiratory information extracted from 
BCG signals, and body movements are useful information in 
evaluating the sleep quality. This is also very beneficial for 
HF monitoring since dyspnea/apnea is an important symptom 

related to HF. It is worth noting that in Fig. 3 (d) there appears 
to be a short period of apnea (manifested by the constant 
amplitude of BCG) right before and after the posture change. 

We have tested our sensors on 5 different beds and 5 
healthy subjects. In all these cases, BCG signals have been 
successfully recorded.  Generally, the BCG strengths are 
different among the subjects and different beds may modulate 
BCG differently. This will pose challenges on algorithms 
development.   
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Fig. 3. (a) An ultra-sensitive accelerometer mounted on the front frame of a 
king-size bed; (b) representative sleep data (2 hours); (c) enlarged view 
illustrating the detail of BCG pulses; (d) enlarged view illustrating large 
spikes caused by body movement. 
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Fig. 4. Modulation of BCG signal by respiration. 
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Fig. 5. Ensemble overlay (blue) and averaging (red) of 100 heart beats. 

To extract the heart rate, we divided BCG signal into 
patches based on the heart beat cycle. Heart beat cycle 
segmentation in BCG is a challenging task because of motion 
artifacts or BCG fluctuations. We employed a novel BCG 
signal segmentation method using autocorrelation - the 
correlation of a signal with itself for finding repeated patterns 
in the signal. The period of a heart beat can be systematically 
determined by the autocorrelation function of a noise 
attenuated signal. Specifically, we first locate the S1 (systole) 
and S2 (diastole) components of heart beat that have higher 
energy in a heartbeat cycle and then find their period through 
autocorrelation. There will be several peaks in autocorrelation 
result, corresponding to the fundamental frequency of a signal 
as well as harmonic frequencies. Since the locations of peaks 
can be mapped to the period of a beat cycle as well as its 
multiples, the distance between two peaks can be recognized as 
the period of a heat beat cycle. Similarly, the respiration cycle 
can be segmented, and the respiration rate can be determined 
from BCG. 

 The ensemble average BCG waveform (t=100 beats, red 
curve in the figure) is computed as shown in Fig. 5 and will be 
used for feature extraction. Specific extrema in the cardiac 
cycle are denoted by the letters H, I, J, K, L, and M [49]. BCG 
waveforms are associated with different cardiovascular 
events[15]. For instance, the foot-ward I wave is caused by the 
rapid ejection of blood in the ascending aorta and pulmonary 
arteries, whereas the deceleration of blood in the ascending 
aorta and the descending blood in the abdominal aorta lead to J 
wave [50]. Decreasing BCG amplitude over time has been 
found to be closely correlated to degrading cardiac health [18]. 
In many cases, the BCG prognosis preceded other clinical 
evidence of heart disease by years. Therefore, in addition to 

sleep tracking of healthy subjects, the sensors developed can be 
used for long-term and home monitoring of patients with heart 
diseases. 

The bed is an excellent platform for BCG monitoring at 
home, ensuring daily monitoring with minimum 
effort/attendance from the patient. Simultaneously, BCG can 
also be recorded from other furniture using our sensor. We 
have demonstrated the recording of BCG from a chair and a 
sofa by mounting the sensor underneath. Figure 6 plots 
recorded BCG signals from a 3-person sofa when a subject sit 
in the center and side sequentially. It is worth noting that the 
head-to-toe BCG force deflects the sofa in vertical direction 
like a bridge. As expected, the amplitude of the signal is larger 
when the subject sits in the center. Similar to bed BCG, the 
amplitude is also modulated by respiration. 
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Fig. 6. The recorded BCG signal when the subject sit in the center and side 
of the sofa sequentially. 

The sensor is placed on the carpet-covered floor above a basement
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Fig. 7. BCG detection on the floor of a residential house.  

Due to its ultra-high sensitivity, it is possible to detect BCG 
signals directly on the floor where the subject stands or sits on, 
as shown in Fig. 7. Therefore, it is possible to monitor BCG by 
simply attaching our sensors to the floors of the home. 
Nevertheless, it is worth noting that when the distance between 
the subject and sensor increases, the signal quality deteriorates. 
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The data in Fig. 7 were recorded on a carpet-covered plywood 
floor supported by 4 cm thick, 23 cm wide lumbers (with a 
pitch of 40 cm) in a residential house. It is more challenging to 
achieve BCG recoding directly from a floor of a commercial 
building, which not only is more rigid, but also experiences 
more environment vibrations. 

V. 3-D BCG 
As indicated previously, BCG is a 3-D vector; however, 

due to the limit of existing instruments, only 1-D BCG is 
measured for most studies. By attaching 3 sensors to the bed in 
orthogonal directions, 3-D BCG capability can be realized, as 
shown in Fig. 8. This 3-D capability is not possible with other 
sensors based on pneumatic pressure or contact forces. Note 
that signal amplitudes recorded by sensors do not represent the 
real amplitudes of the 3 BCG components of the subject, 
because the bed has different spring constants in 3 directions. It 
can also be observed that all the three components are 
modulated by respiration. However the strength of the 
modulation could be different on the three BCG components. 
For example, in Fig. 8, the z component is not modulated as 
much as the x component. 

100 101 102 103 104 105 106

0

 

z

y

x
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Fig. 8. 3-D BCG signal acquired from a regular bed (supine position, 
bandpass filtered from 0.2 Hz to 20 Hz).  x, y, and z directions are illustrated 
in Fig. 1 (a). 

  Compared with other BCG sensors based on contact 
forces, an advantage of our sensor is that the signal can always 
be robustly acquired. As shown in Fig. 9, for all the three 
positions (left, center, and right of a king-size bed), 3-D BCGs 
were successfully recorded. Moreover, it can be observed that 
there are no significant changes of the amplitudes of x and y 
components when the subject moved from left to right. This is 
because under the BCG force, the bed moves in x and y 
directions similar to a rigid body. One the hand, in vertical 
direction, the bed deflects as an edge-fixed diaphragm. 
Therefore, z component is a function of position.  As can be 
observed, the z component decreases as the subject moves from 
left to right, since the z direction sensor is placed on the left 
side of the bed. 
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Fig. 9. Recorded 3-D BCG signals when the subject lay in the left, center 
and right (supine posture) of the bed sequentially. 
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Fig. 10. The impact of the subject-bed angle on x and y components. 
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Figure 10 plots recorded BCG components in x and y 
directions as functions of the angle between the subject and 
the bed. As expected, as the angle increases, the x components 
decrease whereas y component increases. However, if the 
subject moves in a parallel way (i.e., the angle remains 
constant), then x and y components are insensitive to this 
position change.  

It is worth noting that the posture could have significant 
impact on the recorded BCG signals. As shown in Fig. 11, the 
BCG components obtained from a healthy volunteer exhibit 
amplitude, morphology, and phase differences in three 
common sleeping postures. These  results show that it is 
feasible to extract posture signatures from two main groups of 
3-D BCG parameters: (1) the morphology, amplitude change 
of individual components; (2) phase and amplitude ratio among 
3 BCG components. 
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Fig. 11. 3-D BCG of a healthy volunteer in three different sleeping postures. x 
and z components are shifted vertically for clarity. 

 

In our preliminary studies, we divided the collected data 
into one-second segment with 50% overlapping and then 
extracted the following time domain features from each 
segment: short-time amplitude, short-time energy, short-time 
zero-crossing-rate (ZCR), and the statistical features for these 
absolute attributes, such as the mean, maximum, minimum, 
one-order and two-order change rate and variance of short-
time amplitudes, short-time energy and short-time ZCR, root 
mean square (RMS) energy. The time-domain signal is then 
converted into frequency domain using Fast Fourier transform. 
From Fourier power spectrum, we extracted frequency energy 
dynamic coefficient and frequency cepstral coefficients on 12 
frequency band. We fused the time and frequency domain 
features of the corresponding segments into one feature 
vector, i.e., the signature, and use it to identify different 
postures using Support Vector Machines (SVM). SVM is a 
non-probabilistic classifier, which maximizes the margin 
(space) between the two closest samples in different classes 
using hinge-loss function. SVM has been shown to be highly 
effective for classification tasks, including automatic sound 
analysis. Our preliminary results show that SVM can 
successfully detect the postures with an accuracy higher than 
95%.  The identification of postures will help us to monitoring 
the BCG amplitude change more accurately.  

 

DISCUSSION 

Our ultimate goal is to investigate if the BCG signals 
recorded by the ultra-sensitive accelerometers can offer any 
clinical values for the management of some chronic diseases 
such as HF. For instance, we will verify if the change of BCG 
of the same subject over time is a good indicator of 
cardiovascular health. Nevertheless, to extract any clinically 
valuable information from longitudinal change of BCG, we 
have to eliminate other non-physiological factors that 
contribute to the variation of recorded BCG signals, for 
instance, sleeping posture. To obtain meaningful result, we 
must compare BCG under the same posture. 3-D BCG makes it 
feasible to develop algorithms that recognize bed postures.  

Since our accelerometers are not directly attached to the 
human body, it is important to note that what they record are 
the mechanically modulated BCG signals. The mechanical 
properties of beds, chairs, sofas or buildings could vary 
significantly and there is a high likelihood of inter-subject 
differences in BCG signals. Therefore, it is a concern whether 
the algorithms developed for specific beds and limited amount 
of subjects can be applied to different beds and different 
subjects. It is expected that the heart rate and respiration 
detection will be robust. However, it is challenging to identify 
specific postures for different subjects on different beds. 
Fortunately, to extract longitudinal BCG variation caused by 
clinical factors, it is only necessary to group BCG sessions 
under the same posture, without knowing what specific posture 
it is. Because beds typically have anisotropic mechanical 
properties, i.e., different rigidity in x, y, z directions, we will 
avoid using features that are specific to a certain bed or subject, 
such as the absolute amplitude and only normalized features 
will be used for posture recognition. Alternatively, a training 
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session can be included in the beginning, to facilitate more 
accurate posture identification.  

Another critical issue is that the resonant frequency of the 
furniture to which the sensor is attached could fall well within 
the bandwidth of the BCG signal. For example, some beds are 
very flexible vertically and thus have a low resonant frequency 
in z direction. This could impede the proper acquisition of 
BCG.  

The environmental background noise is also a concern. For 
most residential homes or apartments, these background 
vibrations are intermittent and will not be catastrophic, 
especially during night.  For example, when the air 
conditioning unit is on, the noise floor is only slightly higher.    
We can also use reference sensors to cancel these common 
mode noises if necessary.  On the other hand, in some 
commercial buildings, such as hospitals, the environment 
vibration could overwhelm the BCG signal.  

Another problem commonly encountered in real world is 
the multi-occupancy issue. Namely, two or more subjects can 
be present simultaneously. Accelerometers will record BCG 
signals from both or all occupants. Separation of individual 
BCGs is a classic but challenging signal processing problem 
[51].  Using 3-D BCGs or mounting multiple sensors in z 
direction will make the separation of BCGs from two or more 
subjects easier and more reliable.   

While the bed-based system can continuously monitor 
BCG and respiration during sleep, we want patients to be 
monitored in daytime as well. This will be achieved through a 
future goal of developing smart homes by embedding multiple 
accelerometers in various locations. Other sensors such as 
humidity and temperature sensors, can also contribute to the 
intelligence of smart homes. 

CONCLUSION 

Low-cost ultra-sensitive accelerometers based on a novel 
cascaded asymmetric-gapped cantilever structure have been 
developed. These new sensors have been successfully 
demonstrated for non-contact BCG monitoring, especially 
from beds.  Both cardiovascular and respiration information 
can be extracted from BCG signals.  The unobtrusive nature of 
this new method causes minimum disruption to an individual’s 
daily routine.  Furthermore, with minimum required attendance 
of the patient, the bed-based BCG system guarantees daily 
monitoring, effectively addressing the patient adherence issue. 
Moreover, these new sensors can readily convert a regular bed 
to a 3-D BCG measurement instrument, potentially providing 
more complete information of the cardiovascular system, and 
also enabling the identification of sleep postures. Importantly, 
our novel sensor has low cost, minimizing the financial burden 
on patients and medical systems. This paper mainly reports the 
development of the ultra-sensitive accelerometer and sensor’s 
capability of recording BCG signals in a non-contact way.  In 
the future study, we plan to deploy our sensors to monitor real 
patients, investigate the feature extraction from the recorded 
BCG data, and explore how this information can benefit home 
health monitoring, such as sleep monitoring and the 
management of heart failure patients.  
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